ARL-TN-0674 e MAY 2015

ARL

US Army Research Laboratory

Cost Computations for Cyber Fighter Associate

by Andrew Erbs and Lisa M Marvel

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0674 e MAy 2015

ARL

US Army Research Laboratory

Cost Computations for Cyber Fighter Associate

by Andrew Erbs
Cyber Security Collaborative Research Alliance Student,
Pennsylvania State University, State College

Lisa M Marvel
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE o A e

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
May 2015 Final 1 June 2014-31 January 2015
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Cost Computations for Cyber Fighter Associate

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Andrew Erbs and Lisa M Marvel

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory
ATTN: RDRL-CIN-D ARL-TN-0674

Aberdeen Proving Ground, MD 21005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Modeling cost in cyber operations is a difficult problem due to the number of variables involved and the potential perspectives
that can be used to evaluate what constitutes cost. As such, there is a need for a cost computation method and program for the
Cyber Fighter Associate (a knowledge-based system that helps to evaluate agility maneuvers). We developed a cost
computation method and program for evaluating these costs from a number of perspectives while allowing for the changing
network topology of real-world battlefield situations. This cost computation method allows for quick computation of cost for a
given course of action and the potential for the addition of different approaches to cost analysis with a minimum of effort.

15. SUBJECT TERMS
cyber security, software patch management, tactical networks, cyber modeling, cyber simulations

17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON

16. SECURITY CLASSIFICATION OF:
OF ABSTRACT OF PAGES Lisa M Marvel

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified | Unclassified Unclassified uu 58 410-278-6508

Standard Form 298 (Rev. 8/98
Prescribed by ANSI Std. Z39.18

Contents

List of Figures

Preface

1. Introduction

2. Design

3. Conclusions and Future Work

4. References

Appendix. Code Listing

List of Symbols, Abbreviations, and Acronyms

Distribution List

11

49

50

List of Figures

Fig. 1 Model showing the port protocol between the programs.......................
Fig. 2 Flow chart depicting the simplified flow of the cost computation
O 0T = PSSR
Fig. 3 Detailed program graphic depicting the composition of the cost
COMPULALION PrOGIAIMcveveeerieieiie ettt seene e

Preface

This work was developed during a summer internship between my junior and senior
year in Computer Engineering at Pennsylvania State University. | (Andrew Erbs)
inquired with Dr Patrick McDaniel during my junior year about potentially
becoming a research assistant with the Systems and Internet Infrastructure Security
(S1IS) laboratory at Pennsylvania State University. He agreed, and | began work
with the lab the next semester. One part of SIIS’s ongoing research efforts includes
working in collaboration with the Cyber-Security (CSec) Collaborative Research
Alliance (CRA). The CSec CRA is sponsored by the US Army Research Laboratory
(ARL), and I was given an opportunity to conduct research over the summer with
the Computational and Information Sciences Directorate. Thus, this research is part
of a larger ongoing body of research directed toward the goals of the CSec CRA.

Additionally, this report documents a portion of a larger project. There are 2 related
works that were done in concert. The first is the Cyber Fighter Associate, which is
currently in press with (ARL).> The second is a Communication Protocol for
CyAMS and the Cyber Fighter Associate Interface, also documented in an ARL
technical note, ARL-TN-0673.2

L Huber C, Marvel LM. Cyber fighter associate. Aberdeen Proving Ground (MD): Army Research
Laboratory (US); in press.

2 Harman D, Brown S, Henz B, Marvel LM. A communication protocol for CyAMS and the Cyber
Fighter Associate Interface. Aberdeen Proving Ground (MD); Army Research Laboratory (US); 2015 May.
Report No. ARL-TN-0673.

INTENTIONALLY LEFT BLANK.

Vi

1. Introduction

The ability to provide perfectly secured digital information seems like an
impossible task. With the advent of each new security measure, academics and
malicious agents spend large amounts of time and effort to subvert the gains
achieved. The goals of these academics and malicious agents are quite disparate,
but both end up with the same result: new security measures subverted. For this
reason, the network administrator’s job is a difficult one, and because no connected
network is perfectly secure, the administrator has to focus on damage mitigation.
However, damage mitigation is not an easy task because the administrator must
make a wide variety of decisions in a rapid succession. The Cyber Fighter Associate
(CyFiA) may be a very valuable tool to implement under these conditions.

The CyFiA is a program currently being developed by Charles Huber.! The
program is designed to take in vast amounts of information from the status of the
network and present options to network administrators. These options are based on
the goals of the network administrator and ongoing cyber operations. The CyFiA
originates from a similar program called the Warfighter Associate, which assists
with on-the-ground decision making during missions. Because work on the CyFiA
is just beginning, efforts have been focused on one particular scenario: maintaining
capability on a critical path in a network using a variety of agility methods.

Ongoing work is being developed to increase the number of scenarios on which
CyFiA can provide guidance. Because the CyFiA is being developed with potential
scaling in mind, tests occur with an NS-3-based program called CyAMS that,
alongside a high-computing resource, allows testing to include scenarios involving
millions of nodes. Because of this large-scale size, cost computations of agility
actions can be highly intensive, especially when data transmission paths must be
created from a single source.

As a result of these new strategies, a distinct entity to provide cost analysis for the
CyFiA is needed. A cost analysis program would allow the CyFiA to focus solely
on decision making and utilize levels of abstraction concerning the cost of agility
maneuvers. As a result, more capability can constantly be added to the cost
computations without a reduction in capability for the decision-making apparatus.

2. Design

The design of the cost computation apparatus has a few key design components that
greatly shaped the overall structure of the program. As described in Section 1,
because computational requirements may be quite varied on the different

components of the CyFiA, the various components must be able to communicate
over a network. In addition, because cost computations are handled independently
from other components of the CyFiA, the cost computation program should possess
an ability to represent the network in its entirety.

However, there is a large quantity of information that must be passed over the
network as a result of this scheme. Updates to a given node or edge in the graph
must be passed into the onboard representation of the network. If they are not, the
cost computations will be incorrect. Thus, there is a large amount of network traffic,
specifically status updates, and all must be processed before a given cost analysis
can be performed. Therefore, the program required communication over a number
of ports to transfer this information in a timelier manner.

Figure 1 depicts the current model for communications between the various
components of the CyFiA. Of the 7 ports used to listen for incoming data, 6 of them
are used to track status change information coming from the graph. The last port is
the request port, and the other components of the CyFiA request cost computations
or graph path requests over this port. Because a received packet on any of these
ports requires an action from the cost program, multithreaded listeners must be
used. Details of the communication protocol developed to enable commication
between CyFiA, the cost computation program described herein and CYAMS can
be find in Harman, et al.2

A specific class called ListenThread was created for multithreaded listeners. When
ListenThread is instantiated, it is passed a given port on which to listen. Once it
receives information, it appends the port number it is listening on to the received
string. Once this process has been completed, it pushes the received string to a
blocking priority queue, and depending on the port on which it was received, it sorts
these strings into status changes, graphical user interface (GUI) requests, and
computation requests. This process allows the cost computation program to handle
the given updates and requests in the correct order to avoid a majority of race
conditions that may occur due to incorrect status information in the onboard graph
representation.

Cyber Associate

F'ort 3082

Port3071

Port3061

Port3051

Port3041
CyAms Comm. Program
Port3031
Port 3070: Requestld, Nodeld, Lat, Port3070 = |Port3071, Port3072
Long

Port3011: Request ID,
Port3060 = |Port3061, Port3062 Node ID, Decision (String)

Port 3060: Requestid, Nodeld,
capability value, OperatingSystem

Port3050 2 |Port3051, Port3052

Port3040 = |Port3041, Port3042
Port3030 2 |Port3031, Port3032

Port3020 = |Port3022

Port3010 € |Port3011
Port3082:RequestID,
Infected node ID, Patch

Size
Port 3030: Requestld, Nodeld, Port3072

battery total, Battery Power,)
Computation Rate, Battery WorldVeiwer GUI Port3062
Transfer Rate, Battery Receive

Port 3050: NodelD, NodeHealth,
AttackType, VulnerabilityName,
VulnerabilitySignature

Port 3040: Requestld, Nodeld,
Edge Endpaint, Throughput

N\

Port 4000 Port3052
Rate
Port 3020: Request ID, Node 1D, Port 4001 Port3042
Decision (String)
Port3032
Port 3010: Request ID, Node 1D, Port3022
Decision (String) POrt4001; Request ID,
Infected node ID, Patch
Port 4000 Size

Fig.1 Model showing the port protocol between the programs

The parent in the program handles each string in the queue. The handler must be
single-threaded otherwise status updates would contain race conditions with the
cost analysis requests. The handler executes in a continuous loop after creating its
children until it receives an administrative string on a specific port that tells the
program to end or print the current representation of the graph. Because a blocking
priority queue is used for the interaction between the listeners (children) and the
handler (parent), the handler will always process waiting status updates before
attempting any cost analysis. The implicit assumption is that at some point, no
status updates will be in the queue, and at that time the cost program will handle
any cost computations.

The creation and termination of the cost computation program will eventually be
handled by an external entity, and when this occurs, the communication for the
termination of the program must be encrypted so that an adversary or malicious
attacker cannot compromise the integrity of the system by simply telling the cost
program to terminate. Figure 2 illustrates the simplified flow chart of the cost
analysis program. Of critical interest is the order of the yes or no blocks. The higher
ones will be processed first and return to the Input Received block before the lower
ones are processed. The code listing for the cost computation program can be found
in the Appendix.

Program Flow

Program Start

Create Listeners

Iy >
Input _
Na Received .~
Yes

Mo

Update Graph |—————

Yes
Cost Analysis |———»

Route
Computation

Yes
Program End

No

Error Handler

Fig.2 Flow chart depicting the simplified flow of the cost computation program

The next critical areas of the program are the onboard graph representation and how
all of the status updates are handled. Because there are no guarantees that vertexes
and edges cannot be added during a scenario, each piece of graph information is
checked to determine whether the target vertex or edge is already in the graph. Once
this is done, the request is passed to 2 different handlers, depending on whether the
target vertex or edge was in the graph.

If the target vertex was not already present in the graph, then a specific constructor
is used to create the vertex with the given values and default values for all other
information that is required. In the case of edge information, 2 additional questions
are necessary: 1) whether the end vertex of the edge is present in the graph and 2)
whether this specific edge already exists between these 2 vertexes. If the end vertex
is not present, then by definition that edge could not already exist, and as such the
end vertex and the edge are created with the information given. If the edge is not
present but the 2 vertices are, then the edge is simply created. Finally, if the edge
or vertex is already present, it is simply updated with the new information.

It is clear from Fig. 1 that a large amount of specific information is being passed.
Some particular pieces of information such as geographic location and operating
system (OS) are not currently used, although they are updated in the onboard
representation of the graph. These are pieces of information that will be factored
into the cost analysis in future work, and in this way the cost computation has a
large amount of maturation still possible.

The other critical area of the program is the computation request handler, which
also handles critical path requests. As mentioned previously, the critical path is the
“best route” between the 2 important nodes in the simulation. In the GUI, the user
will select different origin and endpoint nodes and then the critical path will be
selected between them based on speed of transit of data. This path will then be
protected by the CyFiA by employing various agility maneuvers. This request and
other future requests to reroute the critical path based on the infection state of nodes
are handled in the computation request portion of the program. However, it is
relevant because the GUI request will only happen once during a simulation, these
requests are ranked above cost requests from the CyFiA in the priority queue.

There are several potential cost analysis functions that the cost program can do
currently: 1) it can calculate the cost to patch a given node with a specific patch of
a specific size; 2) it can calculate the cost to block a specific adjacent node-to-node
connection in the graph; 3) it can provide the cost to quarantine a specific function
of a program running on the node that is vulnerable; and 4) it can provide the cost
to have a particular node heal itself from a vulnerability. For each of these possible
cost computations, a different handler is called. The handlers for the quarantine,

blocking, and healing are all calculated offline using similar platforms as the node
in question. They also send the loss in capability from the quarantine, the lost
throughput on the given edge, and the loss in capability from healing, respectively,
back to the CyFiA.

The handler for the cost analysis of a patch operation is substantially more complex
than these other 3 handlers. The cost of a patch operation can be measured in 2
principal ways: battery cost and time to completion. Because it is impossible to
relate these 2 numbers into a single cost analysis, the CyFiA asks for a specific cost
analysis in one of these 2 categories. If the time to completion computation is
requested, then the best path between the 2 nodes is computed using Djikstra’s
algorithm for best path. Once this process is completed, the cost to traverse this
path is computed by taking the patch size and multiplying it by the summation of
the throughput on each edge that is traversed along the best path. The result is the
amount of time (in seconds) required to transfer the patch. The result is then sent
back to the CyFiA.

If the battery impact computation is requested, then the best path is computed using
Djikstra’s algorithm. The cost to traverse this path is then computed by taking the
patch size and multiplying it by the summation of the battery weights on each edge
that is traversed along the best path. The battery weight on each edge is the
summation of the battery cost to send from the sending node along with the battery
cost to receive from the receiving node. This results in a battery impact in watt
hours. The result is then sent back to the CyFiA.

This method comprises all of the functionality available at the current time in the
cost computation program for the CyFiA. Figure 3 illustrates the processes
described above.

Sends info to

Uses info from

g Multithreaded

NS3 Gul CyFi
—
1 Y
Listener Listener Listener Listener

- -

Heal Cost

';’# ‘!:":ﬂ _,.-'F' o= z‘."i" “
Update - Update
Update Geo | | Update OS ”“i —— ipﬁ Send 1 Send to CyFi

Detailed program graphic depicting the composition of the cost computation program

3. Conclusions and Future Work

Modeling cost of agility maneuvers in cyber operations is very difficult and not
straightforward. As such, it was important to create a tool that could be
implemented to do cost computations for CyFiA. The previously stated
methodology does this in a standalone package, and as such it is versatile and it can
potentially be used in a number of different circumstances with minor changes.
Overall, the cost computation program solves critical problem, but it has the
potential to provide a significant amount of additional functionality. This would be
the subject of future work.

Future studies should include work in 3 areas. The first area to pursue is a real-time
updating graph that shows 2 things: 1) the summation of the health of all the nodes
versus time and 2) the battery level summation of all of the nodes versus time.
These graphs, alongside a metric of “time to 100% operational”, could be a
powerful tool that might facilitate some very interesting research on priorities in
network security and their results on the state of the network. The second area to
pursue is a more efficient computation of best path. Because decisions in network
security must be made rapidly at times, a faster computation of best path could be
helpful . To accomplish this goal, algorithms with heuristics seem to be the best
choice; however, a heuristic process needs to be created for traversing a network
before this path can be used. The last area to pursue is adding safeguards into the
throughput patch plan and the battery patch plan. These safeguards could be used
to check whether the best plan will expend all of the battery available, and if so, it
could recommend another plan. This does necessitate a larger question of
establishing the lowest acceptable battery power.

In conclusion, there is always more depth that can be added to the cost computations
given, but when should that depth arrive in more precise forms of query, and when
should that precision originate from an abstracted “computation” are questions that
must be resolved.

4.

1.

References

Huber C, Marvel LM. Cyber fighter associate. Aberdeen Proving Ground
(MD): US Army Research Laboratory (US); in press.

Harman D, Brown S, Henz B, Marvel LM. A communication protocol for
CyAMS and the cyber associate interface. Aberdeen Proving Ground (MD):
US Army Research Laboratory (US); 2015. Report No.: ARL-TN-0673.

INTENTIONALLY LEFT BLANK.

10

Appendix. Code Listing

This appendix appears in its original form, without editorial change.

11

//written by Andrew Erbs

/*

unit for throughput is in megabytes per second

POTENTIAL factor in loss of battery power
POTENTIAL factor in computational battery cost with
suseptibility

*/
/%

order to work on:

10) resiliency in the network (time to operational)

A) charts

14) figure out undefined behavior if it cant get to
endpoint (i think it stays infinity)

in general test program

*/

import java.net.*;

import java.util.*;

import java.io.*;

import java.util.concurrent.*;

//this is the overall class structure which will
//implement all of the cost/risk code
public class davidCost {

static BlockingQueue<String> workToDo = new
ArrayBlockingQueue<String>(1024) ;

static List<Vertex> Graph;

static InetAddress localaddr;

public static void main (String[] args) {

try {//tries out the networking code for a local
address
localaddr =
InetAddress.getByName ("127.0.0.1");
}
catch (UnknownHostException e) {
System.out.println("Couldn't find local
address") ;

}

ArrayList<Thread> tList = StartlListeners();

Graph = new ArrayList<Vertex>();

12

Thread t = new Thread (new Runnable () {

@Override

public void run() {
boolean programkEnd = false;
while (!programkEnd) {

String line= "";

String[] lineInfo;

try {

line = workToDo.take(); //will block
until it recieves a message

}

catch (InterruptedException e) {

System.out.println ("the parent take
operation was interrupted");

}

catch (Exception e) {

System.out.println("the parent take
operation threw unknown exception");

//programkEnd=true;//this time it is
arbitrary end to the input loop *****x*x****xx*xyhy is this
taken out?

}

lineInfo=line.split(",");

boolean parses=true;

for(int ind = 0; ind < 3; ind++) {

try {
int temp =
Integer.parselnt (lineInfo[ind]); //******xx****4how 1is
there only one integer
}

catch (NumberFormatException e)

System.out.println ("Argument " + ind + " does not
parse to an integer");
parses=false;
}
}
if(lineInfo.length < 3) {
System.out.println("there was
an error parsing the operation: length is less than 3");
parses=false;
}
else if (parses &&
Integer.parselInt (lineInfo[0])==3082) {//if it did originate
from chuck's port
try {
int temp =
Integer.parselnt (lineInfo[3]);
}

13

catch (NumberFormatException e)
{
System.out.println ("Patch
Size does not parse to an integer in request" +
lineInfo[l]);
parses=false;
}

if (parses) {

System.out.println ("handleing request ");
for(int i = 0 ; 1 <
lineInfo.length; i++) {

System.out.println ("reequst " + lineInfol[i]);
}
HandleRequest (1ineInfo) ;
PrintGraph () ;
programEnd=true; //this
time it is arbitrary end to the input loop
}
}
else if (parses &&
Integer.parseInt (lineInfo[0])==3022) {//if it did originate
from scott's port
//execute the critical path
computation
HandleGuiPath (lineInfo);
}
else if (parses &&
Integer.parseInt (lineInfo[0])==3002) {//if it originate
from kill port
int argument =
Integer.parselnt (lineInfo[l]);
if (argument==0) {
PrintGraph () ;
}
else {
programEnd=true;

System.out.println ("Received kill order, committing
seppuku...");
}
}
else if (parses) {
int location =
SearchForNode (Integer.parselnt (lineInfo[2]));
if (location'!=-1) {//is in the
graph
HandleUpdate (lineInfo,
location);
}
else {//is not in the graph

14

HandleCreation (lineInfo);

1)
tList.add(t) ;

for(int 1 = 0; i < tList.size(); i++){
tList.get (i) .start();
}
for(int 1 = 0; i < tList.size(); i++){
try {
tList.get (i) .join();
} catch (InterruptedException e) {
e.printStackTrace();

}

}

L1170 7 7007770777707
L1110 0 7777700077777 77777

/*
Function: StartListeners
Arguments:
Explanation: Creates all of the listeners on the various
ports that are used
Returns:
*/

N,
LI TTTT 0077777000777

private static ArrayList<Thread> StartListeners () {
ArrayList<Thread> tList = new
ArrayList<Thread> () ;

//creates the threads to listen
ListenThread geoThread = new ListenThread(3072);
Thread geoThreadHead = new

Thread (geoThread) ; //thread based on an instance of a class
tList.add (geoThreadHead) ;
//geoThreadHead.start () ;//runs the run method
//port, requestID, NodeID, Lat, Long

ListenThread capThread = new ListenThread(3062);
Thread capThreadHead = new

Thread (capThread) ; //thread based on an instance of a class
tList.add (capThreadHead) ;
//capThreadHead.start () ;//runs the run method
//port, requestID, NodelID, Operating System

15

ListenThread healthThread = new
ListenThread (3052);

Thread healthThreadHead = new
Thread (healthThread);//thread based on an instance of a
class

tList.add (healthThreadHead) ;

// healthThreadHead.start ();//runs the run
method

//port, RequestID, NodeID, NodeHealth,
AttackType, VulnerabilityName, VulnerabilitySignature

ListenThread edgeThread = new
ListenThread (3042) ;
Thread edgeThreadHead = new
Thread (edgeThread) ; //thread based on an instance of a class
tList.add (edgeThreadHead) ;
//edgeThreadHead.start () ;//runs the run method
//port, requestID, NodelID, Edge Endpoint,
Throughput

ListenThread batteryThread = new
ListenThread (3032);

Thread batteryThreadHead = new
Thread (batteryThread) ; //thread based on an instance of a
class

tList.add (batteryThreadHead) ;

// batteryThreadHead.start();//runs the run
method

//port, requestID, NodelID, battery total,
Battery Power, Computation Rate, Transfer Rate, Recieve
Rate

/1777707000077 /This is the
thread for listening to chuck////////////////

ListenThread requestThread = new
ListenThread (3082);//3081 for sending to chuck

Thread requestThreadHead = new
Thread (requestThread) ; //thread based on an instance of a
class

tList.add (requestThreadHead) ;

// requestThreadHead.start();//runs the run
method

//port, requestID,startNode, endNode, plan #,
patchsize (should be 0 in all plans but "4")

/11777000777 /This s the
thread for listening to scott////////////////

ListenThread criticalThread = new
ListenThread (3022);//3022 for sending to scott

16

Thread criticalThreadHead = new
Thread (criticalThread);//thread based on an instance of a
class

tlist.add(criticalThreadHead) ;

// criticalThreadHead.start();//runs the run
method

//port, regestID, origin, endpoint

[I777777777777777777777777777/7//This is the

thread for ending the program

ListenThread endThread = new
ListenThread (3002);//3022 for sending to scott
Thread endThreadHead = new
Thread (endThread) ; //thread based on an instance of a class
tlList.add (endThreadHead) ;
// endThreadHead.start ();//runs the run method
//port, regestID, origin, endpoint
return tList;
}
[177777 7777077777777 777777777777777777777777777777777
L1777 777777777777777777777777

/*
Function: HandleCreation
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and depending on the port it was received on, creates the
node
with the given infotmation. If edge data is received, it
will
create end node if it doesn't exist. Default values are
used when none are specified.
Returns:
*/
L1177 77 7077077077777 777777777777 77777777777777777777
L1777 77 777777707777 7777777777
private static void HandleCreation (String [] line) {
if(line[0].compareTo ("" + 3072)==0) {//this is
the geo thread
//port, requestID, NodeID, Lat, Long
HandleCreationGeo (line) ;
}
else if(line[0].compareTo ("" + 3062)==0) {//this
is the cap thread
//port, requestID, NodelID, Operating
System
HandleCreationCap (line);
}
else if(line[0].compareTo ("" + 3052)==0) {//this
is the health thread

17

//port, RequestID, NodeID, NodeHealth,
AttackType, VulnerabilityName, VulnerabilitySignature
HandleCreationHealth (line) ;
}
else if(line[0].compareTo ("" + 3042)==0) {//this
is the edge thread (HANDLES ONLY ONE EDGE AT A TIME)
//port, requestID, NodeID, Edge Endpoint,
Throughput
HandleCreationkEdge (1line) ;

}
else if(line[0].compareTo ("" + 3032)==0) {//this
is the battery thread
//port, requestID, NodeID, Battery Total,
Battery Power, Computation Rate, Transfer Rate, Recieve
Rate
HandleCreationBattery(line) ;
}
//should have made it through, so if not
somthing is wrong
else {
System.out.println ("There was an error in
creating the node from the input");
}
}
L1177 7777777777777 77777777 777777777 77777777777
L1177 7077777777777 777777777

/*
Function: HandleCreationGeo
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and creates the node with the given infotmation. Default
values are used when
none are specified.
Returns:
*/

L1777 77 7077077077777 777777777777 77777777777777777777
L1777 77 777777707777 7777777777

private static void HandleCreationGeo (String []
line) {

if(line.length<b) {

System.out.println("In the creation
handler (port 3072) size " + line.length + " given and size
5 needed");

}
else {

Vertex created = new
Vertex (Integer.parselInt (line[2]),

Double.parseDouble (1line[3]),

Double.parseDouble (line[4]));//geo contructor

18

Graph.add(created) ;
}
}
[1777
117777777777 77777777777777777

/*
Function: HandleCreationCap
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and creates the node with the given infotmation. Default
values are used when
none are specified.
Returns:
*/

L1177 7077777777707 7777777777777 777777777 77777777777
L1777 7777777777777 777 7777777

private static void HandleCreationCap (String []
line) {

if(line.length<4) {

System.out.println("In the creation
handler (port 3062) size " + line.length + " given and size
4 needed");

}

else {
Vertex created = new
Vertex (Integer.parseInt (line[2]));//geo contructor

Graph.add (created) ;
}
}
L1777 77 77777777777 77777777777/777777777777777777777777
[177777 777777777777 7777777777

/*
Function: HandleCreationHealth
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and creates the node with the given infotmation. Default
values are used when
none are specified.
Returns:
*/

L1170 7777 777777
L1177 07 7077777777777 777777777

private static void HandleCreationHealth (String []
line) {

if(line.length<6) {

System.out.println("In the creation
handler (port 3052) size " + line.length + " given and size
7 needed") ;

}

else {

19

int temp=0;
temp=ParseHealth (line[3]);//converts
string to an integer
Vertex created = new
Vertex (Integer.parselnt (line[2]), temp,line[4],
line[5]);//health contructor
Graph.add(created) ;
}
}
L1777 77 777777 77
/177777770777 777777777777777

/*
Function: HandleCreationkdge
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and creates the node with the given infotmation. Default
values are used when
none are specified. If the edge endpoint doesnt exist it is
created.
Returns:
*/
L1777 77 7777777707777 7777777777777 777777777777 77777
L1171 7777777777777 777777777
private static void HandleCreationEdge (String []
line) {
if (line.length<b) {
System.out.println("In the creation

handler (port 3042) size " + line.length + " given and size
5 needed");
}
else {
Vertex created = new
Vertex (Integer.parselInt (line[2]));//geo contructor

int batteryCost =
created.batteryTransferRate;//passes the normal batteryCost

//must search through the graph for the
correct node, else create it

int endLocation =
SearchForNode (Integer.parselnt (1line[3]));

if (endLocation!=-1) {//is in the graph
(the edge should never exist at this point, since origin
doesnt exist)
Edge tempEdge = new
Edge (Graph.get (endLocation) , Integer.parselnt (line[4].trim()
) ybatteryCost) ;

created.adjacencies.add (tempEdge) ; //adds the edge to

the vertex being created

}

20

else {//is in the graph (the edge should
never exist at this point, since origin doesnt exist)
Vertex tempNode = new
Vertex (Integer.parselInt (line[3]));
Graph.add (tempNode) ;
endLocation =
SearchForNode (Integer.parselnt (1line[3]));
System.out.println ("\n*****x*xxkkk*k n
+ Integer.parselnt(line[4].trim()));
Edge tempEdge = new
Edge (tempNode, Integer.parseInt (1line[4].trim()),batteryCost)

14

created.adjacencies.add (tempEdge) ; //adds the edge to
the vertex being created

}
Graph.add(created) ;

//
1f (Graph.get (endLocation) .nodeID == created.nodelID) {

// System.out.println("line "
+ line[0] + " " + line[l] + " "™ 4 line[2] + " " 4+ line[3] +
" " + line([4]);

// }

//now add the inverse edge, since the
origin + edge has now been created

// int firstLocation =
SearchForNode (created.nodelID) ;
// Edge inverseEdge = new

Edge (Graph.get (firstLocation), Integer.parselnt (line[4].trim
()) ,batteryCost) ;
//
Graph.get (endLocation) .adjacencies.add (inverseEkdge) ; //adds
the inverse edge to the vertex
}

}

L1777 77 7777777777777 777777777777777777777777777777777
L1777 7777777777777 7777777777

/%
Function: HandleCreationBattery
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and creates the node with the given infotmation. Default
values are used when
none are specified.
Returns:
*/

L1177 7777777777777 77777 77777777777
L1177 77777 777777777 777777777

private static void HandleCreationBattery (String []
line) {

21

//port, requestID, NodelID, Battery Total (j),
Battery Power, Computation Rate, Transfer Rate, Recieve
Rate

if(line.length<8) {

System.out.println("In the creation
handler (port 3032) size " + line.length + " given and size
8 needed") ;

}
else {

Vertex created = new
Vertex (Integer.parselInt (line[2]),

Integer.parselnt (line[3]),
Integer.parselnt (line[5]),
Integer.parselnt (line[6]),

Integer.parselInt (line[7].trim()));//geo contructor
Graph.add (created) ;
}
}
17777777777 77777777777/7777777777777777777777777777777
[1777777777777777777777777777

/*
Function: HandleUpdate
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and depending on the port it was received on, updates the
node
with the given infotmation. If edge data is received, it
will
create end node if it doesn't exist.
Returns:
*/

L1707 7077700770777
L1177 07 7777777777777 777777777

private static void HandleUpdate (String [] line, int
graphLocation) {

if(line[0].compareTo ("" + 3072)==0) {//this is
the geo thread
//port, requestID, NodeID, Lat, Long
HandleUpdateGeo (line, graphLocation);
}
else if(line[0].compareTo ("" + 3062)==0) {//this
is the cap thread
//port, requestID, NodeID, Operating
System
HandleUpdateCap (line, graphLocation);

}

else if(line[0].compareTo ("" + 3052)==0) {//this
is the health thread

22

//port, RequestID, NodeID, NodeHealth,
AttackType, VulnerabilityName, VulnerabilitySignature
HandleUpdateHealth (line, graphLocation);

}
else if(line[0].compareTo ("" + 3042)==0) {//this
is the edge thread
HandleUpdateEdge (1line, graphLocation) ;
}
else if(line[0].compareTo ("" + 3032)==0) {//this
is the battery thread
//port, requestID, NodeID, Battery Total,
Battery Power, Computation Rate, Transfer Rate, Recieve
Rate
HandleUpdateBattery(line,graphLocation) ;

}
//should have made it through, so if not
somthing is wrong
else {
System.out.println ("There was an error in
handling the given input");
}

}
L1117 7777777777 7777777777777
L1117 7777 7777777777777

/*
Function: HandleUpdateGeo
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and updates the node with the given geo information.
Returns:
*/
L1777 7077777777777 7777777777777 7777777777777 7777777
L1177 7777777777777 777777777
private static void HandleUpdateGeo (String [] line,
int graphLocation) {
if (line.length<b) {
System.out.println("In the update handler
(port 3072) size " + line.length + " given and size 5
needed") ;
}
else {
Graph.get (graphLocation) .latitude =
Double.parseDouble (1line[3]);
Graph.get (graphLocation) .longitude =
Double.parseDouble (1line[3]);
}
}

23

N N,
L1177 7777777777777

/*
Function: HandleUpdateCap
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and updates the node with the given capability information.
Returns:
*/
L1170 7 7777777777777 77777 7777777777777
L1177 7077777777777 777777777
private static void HandleUpdateCap (String [] line,
int graphLocation) {
if (line.length<b) {
System.out.println("In the update handler
(port 3062) size " + line.length + " given and size 4
needed") ;
}
//do nothing since os is unnecessary
}
L1170 7 7077077007777
L1777 7 7777777777777 7777777777

/*
Function: HandleUpdateHealth
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and updates the node with the given health information.
Returns:
*/
L1177 7077070777007 777777
L1170 7 7007777777777 777777777
private static void HandleUpdateHealth (String []
line, int graphLocation) {
if (line.length<6) {
System.out.println("In the update handler
(port 3052) size " + line.length + " given and size 7
needed") ;
}
else {
Graph.get (graphLocation) .health =
ParseHealth(line[3]);//converts string to an integer
Graph.get (graphLocation) .vulnerabilityName
= line([4];

Graph.get (graphLocation) .vulnerabilitySignature =
line[5];
}
}
LITTTLT 0007777700077 77777777 777
L1710 70007777777777

24

/*
Function: HandleUpdateEdge
Arguments: String [] line
Explanation: Takes in the array of string arguments
received over the network,
and updates the node with the given edge information. If
the edge does not exist
it is created.
Returns:
*/
L1170 7 7777777777777 77777 7777777777777
L1177 7777777777777 777777777
private static void HandleUpdateEdge (String [] line,
int firstLocation) {
//port, requestID, NodeID, Edge Endpoint,
Throughput
if(line.length<b5) {
System.out.println("In the update handler
(port 3042) size " + line.length + " given and size 5
needed") ;
}
else {
int batteryCost =
Graph.get (firstLocation) .batteryTransferRate;
//must search through the graph for the
correct node, else create it
int endLocation =
SearchForNode (Integer.parselnt (1line[3]));
if (endLocation!=-1) {//is in the graph
//does the edge already exist?
Vertex firstVertex =
Graph.get (firstLocation);//gets the two vertexes for use in
the search for edge function
int secondID =
Integer.parselnt (line[3]);
int secondLocation =
SearchForNode (secondID) ;

Vertex secondVertex =
Graph.get (secondLocation) ;

int edgelocation =
SearchForEdge (firstVertex, secondVertex) ;

if (edgeLocation==-1) {//edge doesn't
exist in the graph

batteryCost+=Graph.get (endLocation) .batteryReceiveRat
ey
Edge tempEdge = new
Edge (Graph.get (secondLocation), Integer.parselnt (1line[4].tri
m()),batteryCost) ;

25

//Edge inverseEdge = new
Edge (Graph.get (firstLocation), Integer.parselnt (line[4] .trim
()) ,batteryCost) ;

Graph.get (firstLocation) .adjacencies.add (tempEdge) ;//
adds the new edge to the vertex

//Graph.get (secondLocation) .adjacencies.add (inverseEd
ge);//adds the inverse edge to the vertex
}
else {//edge does exist in the graph
int updatedThroughput =
Integer.parselnt (line[4].trim());

Graph.get (firstLocation) .adjacencies.get (edgelLocation
) . throughput=updatedThroughput;
}
}
else {
//1f the end location is not in the
graph, then the edge does not exist
Vertex tempNode = new
Vertex (Integer.parselInt (1line[3]));
Edge tempEdge = new
Edge (tempNode, Integer.parselInt (1line[4].trim()),batteryCost)
//Edge inverseEdge = new
Edge (Graph.get (firstLocation), Integer.parselnt (line[4].trim
()) ,batteryCost) ;

Graph.get (firstLocation) .adjacencies.add (tempEdge) ;//
adds the edge to the vertex being created

//tempNode.adjacencies.add (inverseEdge);//adds the

inverse edge to the vertex
Graph.add (tempNode) ;
}
}

}

L1177 7 7777777777777 7777777777777 77777777777
L1177 7777777777777 777777777

/*
Function: HandleUpdateBattery
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and updates the node with the given battery information.
Returns:
*/

L1177 7777777777777 7777777777777 777777777 77777777777
L1177 77777 777777777 777777777

26

private static void HandleUpdateBattery (String []
line, int graphLocation) {
if(line.length<7) {
System.out.println("In the update handler
(port 3032) size " + line.length + " given and size 6
needed") ;
}
else {
Graph.get (graphLocation) .batteryRemaining
= Integer.parselnt (line[3]);

Graph.get (graphLocation) .batteryComputationRate =
Integer.parselnt (line[5]);

Graph.get (graphLocation) .batteryTransferRate =
Integer.parselnt (line[6]);

Graph.get (graphLocation) .batteryReceiveRate =
Integer.parseInt (line[7].trim()),
}
}
L1170 7 7077077007777
L1777 7 7777777777777 7777777777

/*
Function: SearchForEdge
Arguments: String health

Explanation: Searches for an edge on the given node which
points to the end
location.
Returns: Returns the index in the edge array searched
for. Returns -1 if
not found.
*/
L1707 7077700770777
L1177 07 7777777777777 777777777
private static int SearchForEdge (Vertex start, Vertex
end) {
ArrayList<Edge> edges = start.adjacencies;
for (int ind=0; ind<edges.size(); ind++) {
Edge temp = edges.get (ind);
if (temp.target.nodeID==end.nodelID) {//if
node ID's are the same
return ind;
}
}
return -1;
}
L1707 777777777 77777777777
L1177 77777 777777777 777777777

/*
Function: ParseHealth
Arguments: String health

27

Explanation: Takes in the health as a string and converts
it to a integer type.
Returns: Returns the health of the node as an integer
*/
L1777 77 7777777777777 777777777777777777777777777777777
/177777777777 7777777777777777
private static int ParseHealth (String health) {
if (health.compareTo ("infected")==0) {
return 1;
}
else if (health.compareTo ("vulnerable")==0) {
return 2;

else if (health.compareTo ("suseptible")==0) {
return 3;

else if (health.compareTo ("immune")==0) ({
return 4;

}

else {
System.out.println ("Node health not parsed
correctly: " + health + " returning vulnerable.");

return 2;
}
}
[1777
1177777777 7777777777777777777

/*
Function: SearchForNode
Arguments: int nodelID

Explanation: Takes in the nodeID and searches the graph for
the node. Returns the
location of the node requested. Returns -1 if not found.
Returns: Returns the location of the node in the graph
array.
*/
L1177 7077777777777 7777777777777 777777777 77777777777
L1177 7777777777777 777777777
private static int SearchForNode (int nodelID) {
for (int ind=0; ind<Graph.size(); ind++) {
if (Graph.get (ind) .nodeID == nodelD) {
return ind;
}
}
return -1;
}
L1177 7777777777707 777777777 77777777777
L1177 7077777777777 777777777
/%
Function: SearchForImmuneNodes
Arguments:
Explanation: Searches the graph for immune nodes.

28

Returns: Returns a list of the immune vertexes in the
graph
*/
L1777 7777770770777 7777 777777 777777777777777777777777777
/1777777777 777777777777777777
private static ArraylList<Vertex>
SearchForImmuneNodes () {
ArraylList<Vertex> temp = new
ArrayList<Vertex> () ;
for (int ind=0; ind<Graph.size(); ind++) {
if (Graph.get (ind) .health == 4) {//if the
node 1is immune/patched
temp.add (Graph.get (ind)) ;
}
}
return temp;
}
[/ 7770707077777 7777777777 7777777777777777777777777
/1777700000777 /7777 (shouldnt need to use this)
/*
Function: UpdateSuseptible
Arguments:
Explanation: Loops through all of the graph edges and
update the correct nodes to
be suseptible.
Returns:
*/
L1777 77 7777777777777 777777777777777777777777777777777
/177777777777 7777777777777777
private static void UpdateSuseptible () {
for(int ind=0; ind<Graph.size(); ind++) {
Vertex node =Graph.get (ind);
if (node.health==1) {
for(int ind2=0;
ind2<node.adjacencies.size(); ind2++) {
Edge next =
node.adjacencies.get (ind2) ;
next.target.health=3;
}

}
}
L1170 7777 777777
L1177 07 7077777777777 777777777
/*
Function: UpdateEdges
Arguments:
Explanation: Loops through all of the graph edges and
update the edge weights with
the correct amounts.
Returns:

*/

29

L1177 7077777777777 777777777 77777777777
L1177 7077777777777 777777777
private static void UpdateEdges () {
for (int ind=0; ind<Graph.size(); ind++) {
Vertex node =Graph.get (ind);
for(int ind2=0;
ind2<node.adjacencies.size(); ind2++) {
Edge next =
node.adjacencies.get (ind2) ;
int temp = node.batteryTransferRate;
temp+=next.target.batteryReceiveRate;
next.batteryCost=temp;

}
}
L1117 777777 7777777777777
[T 7777777777777

/*
Function: UpdateCriticality
Arguments: ArraylList<Vertex> criticalPath

Explanation: Loops through all of the vertexes in the given
list makes them
critical in the graph
Returns:
*/
L1177 7777777777777 77777777 777777777 77777777777
L1177 7077777777777 777777777
private static void
UpdateCriticality (ArrayList<Vertex> criticalPath) {
for (int ind=0; ind<criticalPath.size(); ind++) {
Vertex next = criticalPath.get (ind);
int location = SearchForNode (next.nodelD) ;
Graph.get (location) .critical=true;
}
}
L1777 7077777777777 7777777777777 7777777777777 7777777
L1177 7777777777777 777777777

/%
Function: SendPath

Arguments: int requestID, ArraylList<Vertex> path, int
gui, int cyfi,

int cost

Explanation: Sends the path to the on the two given ports,
with the given
cost.
Returns:
*/

L1707 777777777 77777777777
L1177 77777 777777777 777777777

private static void SendPath (int requestID,
ArrayList<Vertex> path, int gui, int cyfi, double cost)
{//3081 to chuck

30

String tupleMessage = "";
System.out.println ("Sending path data " +
path.size());
for (int ind=0; ind<path.size()-1; ind++) {
tupleMessage =requestID + "," +
path.get (ind) .nodeID + "," + path.get (ind+1l) .nodeID + ","
+ cost + ",";
System.out.println ("PATH MESSAGE " +
tupleMessage) ; //shows what i1s outputted to Chuck
try {
DatagramSocket outputThreadSocket =
new DatagramSocket ();//output path socket

outputThreadSocket.setSoTimeout (15000) ;
byte[] sendThreadlLine = new
byte[1024];

System.arraycopy (tupleMessage.getBytes (), 0, sendThread

Line, 0, tupleMessage.length());

//begins sending the message to GUI

System.out.println("localAddress " +
localaddr) ;

DatagramPacket sendGUIPacket = new
DatagramPacket (sendThreadLine, sendThreadLine.length,
localaddr, gui);

//begins sending the same message to
CyFi

DatagramPacket sendCyfiPacket = new
DatagramPacket (sendThreadLine, sendThreadLine.length,
localaddr, cyfi);

outputThreadSocket.send (sendGUIPacket) ;

outputThreadSocket.send (sendCyfiPacket) ;
if(ind == path.size() - 2){

String tupleMessageFinal =
requestID + "," + path.get(ind + 1) .nodeID + "," + -1 +
"," + cost + ",";

DatagramPacket
sendCyfiPacketFinal = new
DatagramPacket (tupleMessageFinal.getBytes (),
tupleMessageFinal.getBytes () .length, localaddr, cyfi);

outputThreadSocket.send (sendCyfiPacketFinal) ;
}
if (ind==(path.size()-2)) {
outputThreadSocket.close() ;

}

}

catch (SocketTimeoutException e) {
System.out.println ("output to a

sendpath socket has timed out");

31

}
catch (PortUnreachableException e) {
System.out.println ("output to a
sendpath: port chosen was unreachable");
}
catch (IOException e) {
System.out.println("an IO error has
occurred from send or recieve in output on sendpath ");
}
catch (Exception e) {
System.out.println ("network code
failed for an unknown reason in output on sendpath ");
}
}
}
L1177 7077777777707 7777777777777 777777777 77777777777
L1777 7777777777777 777 7777777

/*
Function: SendCost
Arguments: int requestID, int cyfi, int cost

Explanation: Sends the cost to the given hostname on the
given port.
Returns:
*/
L1177 7077777777777 777777777777 77777777777777777777
L1177 7077777777777 777777777
private static void SendCost (int requestID, int cyfi,
double cost) {//3081 to chuck
String tupleMessage = "";
tupleMessage =requestID + "," + cost + ",";

System.out.println (tupleMessage +
"k*xx**Message");//shows what is outputted to Chuck
try {
DatagramSocket outputThreadSocket = new
DatagramSocket () ; //output path/cost socket
outputThreadSocket.setSoTimeout (15000) ;
byte[] sendThreadlLine = new byte[1024];

System.arraycopy (tupleMessage.getBytes (), 0, sendThread
Line, 0, tupleMessage.length());
DatagramPacket sendCyfiPacket = new
DatagramPacket (sendThreadLine, sendThreadLine.length,
localaddr, cyfi);
outputThreadSocket.send (sendCyfiPacket) ;
outputThreadSocket.close() ;

}

catch (SocketTimeoutException e) {
System.out.println ("output to a cyfi
socket has timed out (cost)");

}

32

catch (PortUnreachableException e) {
System.out.println ("output to a sendpath:
port chosen was unreachable (cost)");
}
catch (IOException e) {
System.out.println("an IO error has
occurred from send or recieve in output on send cost ");
}
catch (Exception e) {
System.out.println ("network code failed
for an unknown reason in output on send cost ");
}
}
[1777
1177777777 7777777777777777777

/*
Function: HandleRequest
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and handles the request, sending back the correct requested
info.
Returns:
*/

L1777 77 7077077077777 777777777777 77777777777777777777
L1777 77 777777707777 7777777777

private static void HandleRequest (String [] line) {

//port, requestID,startNode, endNode, plan #,

patchsize (should be 0 in all plans but "4")

UpdateEdges () ; //must update edge weights !! or
they are wrong

int requestID = Integer.parselnt(line[l]);

int startingID = Integer.parselnt(line[2]);

int endingID = Integer.parselnt(linel[3]);

int operation = Integer.parselnt(line[4]);

double sizeD = Double.parseDouble(line[5]);

int size = (int)sizeD;

double cost = 0.0;

System.out.println ("request operation " +
operation);

[/ xFFFAA AKX KKK ALAL patch cost (sends patch plan)
System.out.println ("HANDLE PATCH");

int startLocation = SearchForNode (startinglID) ;
int endLocation = SearchForNode (endinglID) ;

System.out.println ("\n Secure Path");

ArrayList<Vertex> secureThroughputPath =
SecurePath (startlLocation, endLocation, true):;

33

double
throughputCost=ComputeCost (secureThroughputPath, true,size);

SendPath (requestID, secureThroughputPath, 9999, 3081, thr
oughputCost) ;

System.out.println ("\n Send Path");
ArrayList<Vertex> secureBatteryPath =
SecurePath (startlLocation, endLocation, false);
double
batteryCost=ComputeCost (secureBatteryPath, false,size);

SendPath (requestID, secureBatteryPath, 9999,3081,batter
yCost) ;

cost = throughputCost + batteryCost; //this is
the cost used to compute other costs

System.out.println("\ncost: " + cost + "
throughput: " + throughputCost + " battery: " +
batteryCost) ;

//*****************IP Block
System.out.println ("\n IP Block");
SendCost (requestID, 3081, 0);

//****************Wall Off
System.out.println ("\n Wall Off");

Vertex tempNode = Graph.get (startLocation);
tempNode.state=2;

SendCost (requestID, 3081, cost * .25);

//****************Heal

System.out.println ("\n Heal");
System.out.println ("Sending heal request ");
Vertex tempNode? = Graph.get (startLocation);
tempNode?2.state = 3;

SendCost (requestID, 3081, cost * .75);

//Patch Critical path (critical path plan)

System.out.println ("\n Critical Path");

ArraylList<Vertex> criticalPath =
SecurePath (startLocation, endLocation, true);

SendPath (requestID,criticalPath,4001,3081,0);//cost
is 0 because it is a critical path

System.out.println ("Error, operation- requested
is not found: " + operation);

34

}

N N,
[ITTT777077777777777777777

/*
Function: HandleGuiPath
Arguments: String [] line

Explanation: Takes in the array of string arguments
received over the network,
and handles the request, sending back the critical path
route over the network.
Returns:
*/
L1177 7777777777777 777777777 7777777777777 7
L1171 7777777777777 77777777
private static void HandleGuiPath (String [] line) {
//port, regestID, origin, endpoint
System.out.println("Critical Path");
int requestID = Integer.parselnt(line[l]);
UpdateEdges () ; //must update edge weights !! or
they are wrong
System.out.println ("Received starting critical
path request, printing graph");
PrintGraph () ;

System.out.println ("start " +
Integer.parselnt (line[2] .trim()) + " end " +
Integer.parselnt (line[3].trim()));

ArrayList<Vertex> criticalPath=
SecurePath (Integer.parselnt (line[2].trim()), Integer.parseln
t(line[3].trim()) , true);

UpdateCriticality(criticalPath);

SendPath (requestID,criticalPath,4001,3081,0);

}
/*
Function: ResetGraphForPathing
Arguments:
Explanation: Iterates through the array and resets the
minDistances so a new
route can be calculated.
Returns:
*/
private static void ResetGraphForPathing () {
for (int ind=0; ind<Graph.size(); ind++) {

Graph.get (ind) .minDistance=Double.POSITIVE INFINITY;
}
}
[1777
117777777777 77777777777777777
/*

Function: CriticalPath

35

Arguments: int origin, int endpoint
Explanation: Takes in the origin and endpoint, and returns
the best critical path
possible in the form of an Array List. It does not consider
infected nodes.
Returns: Returns the critical path in the form of an
ArrayList<Vertex>. The
ArrayList is empty if no path is possible.
*/
L1177 7777077707777 777777777 77777777777777777777
L1170 7 7077777777777 777777777
private static ArrayList<Vertex> SecurePath (int
origin, int endpoint, boolean isThroughput) {
UpdateEdges () ; //must update edge weights !! or
they are wrong
//UpdateSuseptible () ;
ArraylList<Vertex> immune =
SearchForImmuneNodes () ; //must make a search for infected
nodes

System.out.println ("Received a Secure Route
request, printing graph");
PrintGraph () ;

ArraylList<Vertex> clean = new
ArrayList<Vertex>();
for (int ind=0; ind<Graph.size(); ind++) {
Vertex temp = Graph.get (ind);
if (temp.health!=1) {//if the node is not
infected
clean.add (temp) ;
}
}

//should have a graph with no infected nodes

int originLocation = -1;
for (int ind=0; ind<clean.size(); ind++) {
Vertex temp = clean.get (ind);

if (temp.nodelID==origin) {//if the node 1is
the origin
originLocation=ind;//sets the
location to the one found
}
}

int endLocation = -1;
for (int ind=0; ind<clean.size(); ind++) {
Vertex temp = clean.get (ind);

if (temp.nodeID==endpoint) {//if the node
is the endpoint
endLocation=ind;//sets the location
to the one found

}

36

if (originLocation==-1) {//origin node not found
System.out.println("Secure Path: Origin
node not found in clean list ");
int overallOriginLocation =
SearchForNode (origin) ;

if (Graph.get (overallOriginLocation) .health==1)
{//node is infected
System.out.println("origin node
infected") ;
}
}

else if(endLocation==-1) {//endpoint not found
System.out.println ("Secure Path: End node
not found in clean list ");

int overallEndLocation =
SearchForNode (endpoint) ;

if (Graph.get (overallEndLocation) .health==1) {//node
is infected
System.out.println ("End node
infected");

}
else {
//clear any previous run of secure path
for (Vertex v : clean) {
v.previous = null;
v.minDistance =
Double.POSITIVE INFINITY;
}

if (isThroughput) {//if throughput was
selected

ComputePaths (clean.get (originLocation), true);
ArrayList<Vertex> throughputPath =
GetShortestPathTo (clean.get (endLocation)) ;
return throughputPath;
}

else {

ComputePaths (clean.get (originLocation), false);
ArraylList<Vertex> batteryPath =
GetShortestPathTo (clean.get (endLocation));
//ResetGraphForPathing () ;//only
necessary 1f changes werent just made on clean
return batteryPath;
}
}
ArrayList<Vertex> empty = new
ArrayList<Vertex> () ;

37

return empty;

}

L1170 7077777777777 777777777 77777777777
L1171 7777777777777 777777777

/*
Function: PrintGraph
Arguments:
Explanation: Linearly moves through the graph and runs the
toString method on
each vertex in the graph.
Returns:
*/

L1177 7777777777777 777777777 7777777777777 7
L1171 7777777777777 77777777

private static void PrintGraph() {
/*for (int ind=0; ind<Graph.size(); ind++) {
System.out.println (Graph.get (ind) .toString()) ;
px/

}
L1707 7007770077777
L1170 7 7007777777777 777777777
/*
Function: TestOutput
Arguments:
Explanation: Creates and sends a message back to Cra.local
on a given port. Used
solely for testing nework receive code.
Returns:
*/
L1177 7777707770077 777777
L1170 7 7007777777707 7777777777
private static void TestOutput (int port, String
message) {
try {
DatagramSocket outputThreadSocket = new
DatagramSocket (3022); //output socket
outputThreadSocket.setSoTimeout (15000) ;
byte[] sendThreadLine = new byte[1024];
String testThreadMessage = message;

System.arraycopy (testThreadMessage.getBytes (), 0, sendT
hreadLine, 0, testThreadMessage.length());

//InetAddress outgoingThreadAddress =
InetAddress.getByName ("CRA.local");

//eventually this next line will be sent
to port 3020

DatagramPacket sendPacket = new
DatagramPacket (sendThreadLine, sendThreadLine.length,
localaddr, port);

while (!outputThreadSocket.isClosed()) {

38

outputThreadSocket. send (sendPacket) ;

outputThreadSocket.close();/////closes because i am
only sending one thing
}
}
catch (SocketTimeoutException e) {
System.out.println("a socket has timed
out") ;
}
catch (PortUnreachableException e) {
System.out.println("a port chosen was
unreachable") ;
}
catch (IOException e) {
System.out.println("an IO error has
occurred from send or recieve");
}
catch (Exception e) {
System.out.println ("network code failed
for an unknown reason");
}
}
L1777 7 7777777 77
/1777777777777 777777777777777

/*
Function: ComputeCost
Arguments: ArrayList<Vertex> path, Boolean isThroughput

Explanation: Takes in the best path route and computes the
cost on either
battery and throughput.
Returns: Returns the cost of the shortest path along
either throughput or
battery lines.
*/
L1777 7077777777777 7777777777777 7777777777777 7777777
L1177 7777777777777 777777777
private static double ComputeCost (ArrayList<Vertex>
path, boolean isThroughput, int patchSize) {
double sum = 0.0;
double cost = 0.0;
for (int ind=0; ind<(path.size()-1); ind++)
{//only needs to go to the second to last point since edge
is used
Vertex temp = path.get (ind);
//search through the edges until you get
the next vertex path[ind] is next vertex
int edgeToUse=-1;
for (int e=0; e<temp.adjacencies.size();
et++) {

39

if (temp.adjacencies.get (e) .target.nodelD ==
path.get (ind+1) .nodeID) {//endpoint is next vertex
edgeToUse=e;

e=temp.adjacencies.size();//ends the loop since the
the next vertex has been found
}
}
if (edgeToUse==-1) {
//System.out.println ("there was an
error in cost computation, next edge not found");
return -1;
}
//edge to use should have been changed at
this point
if (isThroughput) {

sum+=temp.adjacencies.get (edgeToUse) .throughput; //edg
eToUse is out of bounds
}
else {
sum +=
temp.adjacencies.get (edgeToUse) .batteryCost;//battery
transfer cost + recieve cost Whrs

}

}
if (isThroughput) {
cost = (double) (sum *
patchSize);//edgeToUse is out of bounds
}
else {
//at this point, sum is total of the
network in Whrs
//we want the cost in (joules sum / 3600)
* time to completion
cost = (double) (patchSize* (sum/3600)) ;
}
return cost;
}
[177777 7777777777777 777777777777777777777777777777777
[1777777777777777777777777777

/*
Function: ComputeCompletionTime
Arguments: ArrayList<Vertex> path, int patchSize

Explanation: Takes in the best path route and computes the
time to complete the

patch operation given the patchSize and throughput from
each edge.

Returns: Returns the completion time of the shortest
path.

40

*/
L1170 7077770777777 77777 7777777777777
L1177 7077777777777 777777777
private static double
ComputeCompletionTime (ArrayList<Vertex> path, int
patchSize) {
double time=0;
for (int ind=0; ind<(path.size()-1); ind++) {
Vertex temp = path.get (ind);
//search through the edges until you get
the next vertex path[ind] is next vertex
int edgeToUse=0;
for (int e=0; e<temp.adjacencies.size();
et++) {

if (temp.adjacencies.get (e) .target.nodelD ==
path.get (ind+1l) .nodeID) {//if edge endpoint is next
edgeToUse=e;

e=temp.adjacencies.size();//ends the loop since the
the next vertex has been found
}

}
//edge to use should have been changed at

this point
if (edgeToUse==-1) {
System.out.println ("there was an
error in time calculation, next edge not found");
return -1;

}

time+=patchSize*temp.adjacencies.get (edgeToUse) .throu
ghput;
}
return time;
}
L1177 7077777777777 7777777777777 777777777 77777777777
L1177 7777777777777 777777777
/%
Class: ListenThread
Explanation: This class is a listener on a given port which
pushes received data
onto the blocking queue when it is received.
*/
L1177 7077770777707 77777 777777
L1177 07 7077777777777 777777777
private static class ListenThread implements
Runnable{
public int listenPort;
/%
Method: ListenThread basic contructor
Arguments: int port

41

Explanation: Takes the given port information and sets the
class variable
to that port.

*/
public ListenThread(int port) {
listenPort = port;
}
/*
Method: Run
Arguments:

Explanation: Listens on the chosen port and when data is
received, it
pushes the data onto the BlockingQueue.
*/
public void run() {
try {
DatagramSocket listenSocket = new
DatagramSocket (1listenPort) ;
//listenSocket.setSoTimeout (15000) ;
byte[] receivedData = new byte[1024];
DatagramPacket receivedPacket = new
DatagramPacket (receivedData, receivedData.length);
while (true) {
//receives packet

listenSocket.receive (receivedPacket); // (should
overwrite the last packet sent)
// (testing)output what was
given
String inData = new
String(receivedPacket.getbDatal());

inData = listenPort + "," +
inData;
//String port =
//push to the queue of work
availiable
synchronized (this) {
workToDo.put (inData) ;
//System.out.println ("added this to queue: " +
inData) ;
}
}
}
catch (SocketTimeoutException e) {
System.out.println("a socket has
timed out on port: " + listenPort);
}
catch (PortUnreachableException e) {
System.out.println("a port chosen was
unreachable on port: " + listenPort);

}

42

catch (IOException e) {
e.printStackTrace() ;
//System.out.println("an IO error has
occurred from send or recieve on port: " + listenPort);
}
catch (Exception e) {
e.printStackTrace() ;
//System.out.println ("network code
failed for an unknown reason on port: " + listenPort);
}
}
}
[1777
1177777777 7777777777777777777

/*
Function: ComputePaths
Arguments: Vertex Source, boolean isThroughput

Explanation: takes in the source route and
patch operation given the patchSize and throughput from
each edge.
Returns: Returns the completion time of the shortest
path.
*/
L1177 7777777777777 77777777777 77777777777777777777
L1171 7077777777777 777777777
public static void ComputePaths (Vertex source,
boolean isThroughput) {//yes = throughput , no =
batteryCost
source.minDistance = 0.;
PriorityQueue<Vertex> vertexQueue = new
PriorityQueue<Vertex> () ;
vertexQueue.add (source) ;

while (!vertexQueue.isEmpty()) {//goes until it
is empty
Vertex u = vertexQueue.poll();//gives the
head of the queue

// Visit each edge exiting u
for (Edge e : u.adjacencies) {
Vertex v = e.target;//gets the end
vertex
double weight;
if (isThroughput) {
weight= e.throughput;
}
else {
weight = e.batteryCost;
}
double distanceThroughU =
u.minDistance + weight;//adds weight to the shortest route
so far

43

if (distanceThroughU < v.minDistance)
{//if the weight so far is less than other shortest
vertexQueue.remove (V) ;
v.minDistance =
distanceThroughU ;
v.previous = u;
vertexQueue.add (v) ; //keep
exploring by putting this vertex on the queue
}
}
}
}
L1177 7077777777707 7777777777777 777777777 77777777777
L1177 7777777777 777777777

/*
Function: GetShortestPathTo
Arguments: Vertex target

Explanation: Computes the shortest path to the chosen end
node using Dijkstra's

Algorithm.

Returns: Returns the ArraylList<Vertex> of the shortest
path to the node.

*/

L1177 7077777777777 7777777777777 7777777777777 7777777
L1171 7077777777777 777777777
public static ArraylList<Vertex>
GetShortestPathTo (Vertex target) {
ArraylList<Vertex> path = new
ArrayList<Vertex>();
for (Vertex vertex = target; vertex != null;
vertex = vertex.previous) {
path.add (vertex) ;
}
Collections.reverse (path);
return path;
}
L1177 777 7777777777 77777777/77///Vertex and
Edge Classes////////////////////
public static class Vertex implements
Comparable<Vertex> {
// infected, vulnerable, immune - critical -
suseptible
public final int nodeID;
public ArrayList<Edge> adjacencies;
public double minDistance =
Double.POSITIVE INFINITY;
public Vertex previous;
public int batteryRemaining;//the amount of
battery left in the device (J)
public int batteryTransferRate;//in Whrs
public int batteryReceiveRate;//in Whrs
public int batteryComputationRate;//in Whrs

44

public String vulnerabilityName;
public String vulnerabilitySignature;
public double latitude;
public double longitude;
public boolean critical;//unused
public int health;//infected,
vulnerable, suseptible, immune,
public int state; //normal, healing, walling

(unused)

/*
Method: Edge basic contructor
Arguments: int nodeID

Explanation: Takes the given information and creates the
vertex.
*/
public Vertex (int nodelID) {//constructor if
given the node id only
this.nodeID = nodelD;
adjacencies=new ArrayList<Edge>();
batteryRemaining=100;
batteryTransferRate=1;
batteryReceiveRate=1;
batteryComputationRate=1;
vulnerabilityName="";
vulnerabilitySignature="";
latitude=0;
longitude=0;
critical=false;

health=2;
state=1;
}
/*
Method: Edge overloaded contructor
Arguments: int nodeID, int Lat, int Long

Explanation: Takes the given information and creates the
vertex.
*/
public Vertex (int nodelID, double lat, double
lon) {
//port, requestID, NodeID, Lat, Long
this.nodeID = nodelD;
adjacencies=new ArrayList<Edge>();
batteryRemaining=100;
batteryTransferRate=1;
batteryReceiveRate=1;
batteryComputationRate=1;
vulnerabilityName="";
vulnerabilitySignature="";
latitude=lat;
longitude=lon;
critical=false;

45

health=2;

state=1;
}
/*
Method: Edge overloaded contructor
Arguments: int nodeID, String name, String sig

Explanation: Takes the given information and creates the
vertex.
*/
public Vertex(int nodelID, int health, String
name, String sig) {
this.nodeID = nodelD;
adjacencies=new ArrayList<Edge>();
batteryRemaining=100;
batteryTransferRate=1;
batteryReceiveRate=1;
batteryComputationRate=1;
vulnerabilityName=name;
vulnerabilitySignature=sig;
latitude=0;
longitude=0;
critical=false;
health=health;

state=1;
}
/*
Method: Edge overloaded contructor
Arguments: int nodeID, int battery, int transfer, int

receive
Explanation: Takes the given information and creates the
vertex.
*/
public Vertex(int nodeID, int battery, int
compute, int transfer, int receive) {
this.nodeID = nodelD;
adjacencies=new ArrayList<Edge>();
batteryRemaining=battery;
batteryTransferRate=transfer;
batteryReceiveRate=receive;
batteryComputationRate=compute;
vulnerabilityName="";
vulnerabilitySignature="";
latitude=0;
longitude=0;
critical=false;
health=2;
state=1;
}
/%
Method: toString
Arguments:

46

Explanation: Sends back a string representation of a
Vertex.

*/
public String toString () {
String name = nodeID + ": \n";
String battery = "Battery Remaining: " +
batteryRemaining +
" Battery Compute Rate: " +
batteryComputationRate +
" Battery Transfer Rate: " +
batteryTransferRate +
" Battery Receive Rate: " +

batteryReceiveRate + "\n";

String vuln = "Vulnerability Name: " +
vulnerabilityName +
" Vulnerability Signature: " +
vulnerabilitySignature + "\n";

String gps = "Latitude: " + latitude +
" Longitude: " + longitude + "\n";

String edges = "";

for (int ind=0; ind<adjacencies.size();
ind++) {
edges+=" " +
adjacencies.get (ind) .toString() ;
}
edges+="\n";
String total = name + battery + vuln + gps

+ edges;
return total;
}
/*
Method: compareTo
Arguments: Vertex orther

Explanation: sends back which min distance is shorter
*/
public int compareTo (Vertex other) {
return Double.compare (minDistance,
other.minDistance) ;
}
}
L1170 7777 777777
L1170 7077777777777 777777777
/*
Class: Edge
Explanation: This class is a representation of the edges in
the graph. It

47

principally contains the end vertex and two different
weights:
throughput and battery cost.
*/
L1170 7 7077770777077 7777777777777 77777777777777777777
L1171 7777777777777 777777777
public static class Edge {
public final Vertex target;
public double throughput; //seconds/Mb
public int batteryCost; //transfer of one +
recieve of other

/*

Method: Edge basic contructor

Arguments: Vertex argTarget, int argThroughput, int
argBattery

Explanation: Takes the given edge information and creates
the edge.

*/

public Edge (Vertex argTarget, int argThroughput,
int argBattery) {
target = argTarget;
throughput = (1.0/argThroughput) ;
batteryCost = argBattery;
}
/*
Method: toString
Arguments:
Explanation: Sends back a string representation of an Edge.
*/
public String toString () {
return "target: " + target.nodeID + ", "+
throughput +", " + batteryCost;
}
}

48

List of Symbols, Abbreviations, and Acronyms

CyFiA Cyber Fighter Associate

CRA Collaborative Research Alliance

CSec Cyber-Security

GUI graphical user interface

oS operating system

SIIS Systems and Internet Infrastructure Security

49

(PDF)

(PDF)

(PDF)

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

DIRECTOR

US ARMY RESEARCH LAB
IMAL HRA

RDRL CIO LL

GOVT PRINTG OFC
A MALHOTRA

DIR USARL

RDRL CIN D
L MARVEL

RDRLCINT
A SWAMI

50

